
Apollo: Lightweight Models for Dynamically Tuning
Data-Dependent Code

• Frameworks like RAJA (http://github.com/LLNL/RAJA) allow
developers to map loops to different programming models
independent of scientific code.

David Beckingsale, Olga Pearce, and Todd Gamblin
Lawrence Livermore National Laboratory, Livermore, CA, USA

RAJA provides a way to map
applications kernels to different

programming models

LLNL-POST-697252This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Apollo builds decision-models to
tune parameters

forall< EXECUTION_POLICY >(0, N, [=] (Index_type i){
y[i] += a * x[i];

}

• Execution policies let us chose where to execute each kernel, but
the programming framework can’t tell us which is fastest!

• Using supervised learning in an offline training phase, we
build a classifier that directly predicts the fastest
parameter value for each kernel invocation.

• The application is run multiple times with various input
problems and execution policies to generate a training
data set.

• Apollo’s Python framework process this data and learns
a decision tree model.

• We then generate a C++ decision model that can be
evaluated at runtime to dynamically tune the
execution policies an application is using.

Performance variability is data-dependent
• The performance of numerical physics kernels in scientific

applications depends strongly on input dataset, data storage,
access pattern, and work to thread mappings.

• We studied three applications: LULESH and CleverLeaf are
hydrodynamics mini-applications, and ARES is a large-scale
production code used for munitions modeling and inertial
confinement fusion simulations.

• We see up to three orders of magnitude in the time taken to
execute each kernel, depending on the input data and the way
the kernel is executed.

Auto-tuning with Apollo frees application
developers from manually choosing parameters

• Existing auto-tuners rely on costly search procedures and over fit for specific inputs, whilst
Apollo can learn how to select the fastest parameters based on application features.

• We are working to build general models that will allow us to predict the fastest parameters
across both applications and hardware platforms, allowing us to learn models from a vast
body of training data, then apply them to a wide range of application runs.

• We will also extend our work to support heterogeneous platforms, using Apollo to predict
where to run kernels, in addition to other parameters.

Figure 1: Performance variability per-kernel in LULESH, CleverLeaf and ARES

																			RAJA

Apollo	Control	Libraries

									Applica3on
RAJA::forall<exec_policy>(IndexSet, [=](int i) {
 sigxx[i] = sigyy[i] = sigzz[i] = - p(i) - q(i);
});

template <typename POLICY,
 typename LOOP>
inline void
forall(IndexSet iset, LOOP loop_body);

Apollo
• Dynamically load control library

Apollo	Recorder Apollo	Model	(Generated)
• Chose policy based on

runtime information
loop=1,	num_iterations=400,	...
loop=3,	num_iterations=125,	...
loop=N,	num_iterations=376,	...

Backends

OpenMP®

Apollo models are dynamically loadable
• Apollo loads the compiled C++ decision model at application startup.

• Execution policies are template parameters that control which programming
model backend is selected. Apollo instantiates each policy type to allow
dynamic backend selection.

• The decision model sits between RAJA and the execution policy back ends,
dynamically selecting an execution policy type based on the features of the
kernel that is about to be executed.

Apollo selects the fastest
parameter up to 98% of the time

Ar
es

Cl
ev
er
lea

f

Lu
les

h

Application

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

• We build one model per-
application, based on training
data generated from three input
problems and 5 problem sizes.

• Using 10-fold cross-validation,
the mean accuracy of these
models is up to 0.98

Figure 3: Predictive accuracy of each Apollo models.

Se
do

v
0

1

2

3

4

5

6

S
p
ee

du
p

LULESH

So
d

Tr
ipl

e
Po

int

Se
do

v

Input Deck

CleverLeaf

Se
do

v
Je
t

Hot
sp
ot

Ares

Policy Default

Dynamically tuning policies at runtime
provides speedups of up to 4.8x

Figure 5: Online speedups for multiple input problems in each application.

• These speedups are problem-dependent, since the fastest policy
choices dependent on the kernel invocation parameters.

• The data sizes encountered in the Triple Point problem in CleverLeaf
benefit most, with a speedup of 4.8x.

16 32 64 12
8

25
6

Processing Cores

0
100
200
300
400
500
600
700
800
900

R
un

ti
m

e
(s

)

Policy Default

MPI ranks make independent
tuning decisions

Figure 6: Parallel runtimes for the Hotspot problem in ARES. We see
speedups on up to 256 processor cores.

Applica'on

Feature	Vector	in	CSV	files
Feature	Vector	in	CSV	files
Feature	Vector	in	CSV	files
Feature	Vector	in	CSV	files
Feature	Vector	in	CSV	files
Feature	Vector	in	CSV	filesTraining	Data

Apollo	Model

Execu'on Apollo	Model	Generator
• Processing training data

generated by the Apollo Recorder
control library

• Build decision tree model that
can predict the best parameter
value for a given sample.

• Generate tuning control library
from decision tree.

if	feature	<	value

parameter	=	p

if	feature	<	value
if	feature	<	value

